Traducción y análisis de palabras por inteligencia artificial ChatGPT
En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
cómo se usa la palabra
frecuencia de uso
se utiliza con más frecuencia en el habla oral o escrita
opciones de traducción
ejemplos de uso (varias frases con traducción)
etimología
Traducción de texto mediante inteligencia artificial
Ingrese cualquier texto. La traducción se realizará mediante tecnología de inteligencia artificial.
Conjugación de verbos con la ayuda de la inteligencia artificial ChatGPT
Ingrese un verbo en cualquier idioma. El sistema generará una tabla de conjugación del verbo en todos los tiempos posibles.
Solicitud de formato libre a ChatGPT de inteligencia artificial
Ingrese cualquier pregunta de forma libre en cualquier idioma.
Puede introducir consultas detalladas que constan de varias frases. Por ejemplo:
Brinde la mayor cantidad de información posible sobre la historia de la domesticación de los gatos domésticos. ¿Cómo fue que en España se empezó a domesticar gatos? ¿Qué personajes históricos famosos de la historia española son dueños de gatos domésticos? El papel de los gatos en la sociedad española moderna.
утверждение теории чисел, согласно которому уравнение xn+yn=zn при n>2 не имеет целых положительных решений. Справедливость теоремы Ферма доказана для ряда показателей n, но в общем виде остается недоказанной. П. Ферма, высказавший эту теорему, не оставил ее доказательства.
Ферма великая теорема
УТВЕРЖДЕНИЕ ИЗ ТЕОРИИ ЧИСЕЛ
Большая теорема Ферма; Последняя Теорема Ферма; Ферма великая теорема; Ферматист; Ферматисты
утверждение П. Ферма о том, что диофантово уравнение (См. Диофантовы уравнения) xn + yn = zn, где n - целое число, большее двух, не имеет решений в целых положительных числах. Ф. в. т. установлена для ряда частных значений n, однако доказательства её в общем случае не получено. Несмотря на простоту формулировки Ф. в. т., полное её доказательство, по-видимому, требует создания новых и глубоких методов в теории диофантовых уравнений. Нездоровый интерес к доказательству этой теоремы среди неспециалистов в области математики был в своё время вызван большой международной премией, аннулированной ещё в конце 1-й мировой войны 1914-18.
Лит.: Dickson L. Е., History of the theory of numbers, v. 1-3, N. Y., 1934; Landau Е., Aus der algebraischen Zahlentheorie und über die Fermatsche Vermutung, Lpz., 1927 (Vorlesungen uber Zahlentheorie, Bd 3).
Великая теоремаФерма
УТВЕРЖДЕНИЕ ИЗ ТЕОРИИ ЧИСЕЛ
Большая теорема Ферма; Последняя Теорема Ферма; Ферма великая теорема; Ферматист; Ферматисты
Вели́кая теоре́ма Ферма́ (или последняя теоремаФерма) — одна из самых популярных теорем математики. Её условие формулируется просто, на «школьном» арифметическом уровне, однако доказательство теоремы искали многие математики более трёхсот лет.